THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH1010H/I/J University Mathematics 2017-2018 Assignment 1 Due Date: 26 Jan, 2018

1. Consider the function f(x) defined by

$$f(x) = \begin{cases} \sqrt{x} & \text{if } x \le 9, \\ \\ \frac{1}{x-9} & \text{if } x > 9. \end{cases}$$

Find the value of f(4), f(9) and f(16).

- 2. Fill in the blanks:
 - (a) Consider the function f(x) = |x|. The function can be described explicitly by

$$f(x) = \begin{cases} \hline & \text{if } x \ge 0, \\ & & \\ \hline & & \\ & &$$

Hence, sketch the graph of f(x) = |x|.

(b) Consider the function $f(x) = |x^2 - 5x + 6|$. The function can be described explicitly by

$$f(x) = \begin{cases} ----- & \text{if } x \ge 3, \\ ----- & \text{if } 2 < x < 3, \\ ----- & \text{if } x \le 2. \end{cases}$$

Hence, sketch the graph of $f(x) = |x^2 - 5x + 6|$.

- 3. Sketch the graphs of the following functions.
 - (a) f(x) = |2x + 4| + |x 1|(b) $g(x) = \begin{cases} \frac{|x|}{x} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$

4. Let $f : \mathbb{R} \to \mathbb{R}$ be a function.

- (a) Show that $\frac{f(x) + f(-x)}{2}$ is an even function and $\frac{f(x) f(-x)}{2}$ is an odd function.
- (b) Hence, show that f(x) can be expressed as a sum of an even function and an odd function.
- 5. Let $f,g:\mathbb{R}\to\mathbb{R}$ be two functions. Show that
 - (a) if f and g are odd functions, then $(f\cdot g)$ is an even function;

- (b) if f and g are even functions, then $(f \cdot g)$ is an even function;
- (c) if f is an odd function and g is an even function, then $(f\cdot g)$ is an odd function.
- 6. By using the product to sum formula, express each of the following expressions as a sum of trigonometric functions.
 - (a) $\cos 2x \cos 5x$;
 - (b) $\sin 3x \sin 7x;$
 - (c) $\sin 4x \cos 6x$.
- 7. Let $t = \tan \frac{x}{2}$, where $-\pi < x < \pi$.
 - (a) By considering $\tan x = \tan(2 \cdot \frac{x}{2})$, show that $\tan x = \frac{2t}{1-t^2}$.
 - (b) Using (a), express $\sin x$ and $\cos x$ in terms of t. Hence, express $\frac{1}{2+3\cos x+4\sin x}$ in terms of t.

(Remark: We will need this when we cover t-substitution in integration.)

8. Show that

$$2[\cos\theta + \cos(\theta + 2\alpha) + \cos(\theta + 4\alpha) + \cos(\theta + 6\alpha) + \cos(\theta + 8\alpha)]\sin\alpha = \sin(\theta + 9\alpha) - \sin(\theta - \alpha).$$

Hence, show that

$$\cos\theta + \cos(\theta + \frac{2\pi}{5}) + \cos(\theta + \frac{4\pi}{5}) + \cos(\theta + \frac{6\pi}{5}) + \cos(\theta + \frac{8\pi}{5}) = 0.$$

- 9. A sequence $\{x_n\}$ is defined by $x_1 = 3$ and $x_{n+1} = 3 + \frac{1}{16}x_n^2$ for $n \ge 1$.
 - (a) Prove that $\{x_n\}$ is bounded above by 4, i.e. $x_n \leq 4$ for all positive numbers n.
 - (b) Prove that $\{x_n\}$ is an increasing sequence, i.e. $x_{n+1} \ge x_n$ for all positive numbers n.

(Remark: By the monotone convergence theorem, $\{x_n\}$ is a convergent sequence, i.e. $\lim_{n \to \infty} x_n$ exists.)

10. (a) (Binomial Theorem) Let x and y be real numbers. By using mathematical induction, prove that for all positive numbers n,

$$(x+y)^n = \sum_{r=0}^n C_r^n x^r y^{n-r},$$

where $C_r^n = \frac{n!}{r!(n-r)!}$.

- (b) Hence, expand $(3x-2)^5$.
- 11. Show that $\frac{(x+h)^n x^n}{h} = \sum_{r=1}^n C_r^n h^{r-1} x^{n-r}.$

(Remark: We will need this when we derive the derivative of x^n , where n is a positive integer.)